HOTS

05. The figure shows a perfectly insulated copper rod with a thermal conductivity of 380 W m-1 K-1. The diameter of the rod is 5 cm. The temperature at P and Q are maintained at 600C and 450C respectively. The rod has reached steady state.

Find
a. the temperature gradient
b. the rate of heat flow
c. the temperature at a point 10 cm away from Q
d. the amount of heat flowing through P and Q in 12 minutes.

Solution

a.
\frac  { d\theta  }{ dx } =\quad \frac { (45\quad -\quad 60) }{ 25 } \\ \\ \frac { d\theta  }{ dx } =\quad -{ 0.6 }^{ 0 }C\quad c{ m }^{ -1 }\\ \\ \frac { d\theta  }{ dx } =\quad -{ 60 }^{ 0 }C\quad { m }^{ -1 }\\ \\ \\ \\

b.
\frac  { dQ }{ dx } =\quad -kA\frac { d\theta  }{ dx } \\ \\ \frac { dQ }{ dx } =\quad -380\pi (\frac { { 0.05 }^{ 2 } }{ 4 } )(-60)\quad J{ s }^{ -1 }\\ \\ \frac { dQ }{ dx } =\quad 44.77J{ s }^{ -1 }

c. Let R be the point 10 cm away from Q. Temperature at
R\quad =\quad 60\quad +\quad [-0.6\quad x\quad (25-10)]\\ \\ R\quad =\quad 60\quad +\quad [-0.6\quad x\quad (15)]\\ \\ R\quad =\quad 60\quad +\quad (-9)\\ \\ R\quad =\quad { 51 }^{ 0 }C\\ \\

d. In steady state,
\frac  { dQ }{ dt } =\frac { Q }{ t } =44.77\\ \\ Q\quad =\quad 44.77t\quad \\ \\ Q\quad =\quad 44.77\quad (12x60)\quad J\\ \\ Q\quad =\quad 32234.4J
Laman: 1 2 3 4 5 6 7
0 0 votes
Article Rating
Subscribe
Notify of
0 Comments
Inline Feedbacks
View all comments