03. A cylindrical rod has a temperature gradient of -0,5 K m-1 . The rate of heat flow in to P is 50 J s-1 .

Assuming that heat cannot escape through the curved surface of the solid but only through its cross section, calculate the thermal conductivity of the rod.

\frac  {dQ}{dt}= 50 J s^{-1} \\ \\  \frac{d\theta}{dx}= - 0,5 K m^{-1}

Area of cross section, A = \pi (1)^2 m^2 = 3,142 m^2 \\ \\

Quick Note !

The rate of heat flow \frac {dQ}{dt} perpendicular to the cross-sectional area A depends on :

  • the cross-sectional A.
  • the temperature gradient -\frac {d\theta}{dt} .
  • the material of the solid.

    It is found that

    \frac  { dQ }{ dt } \propto \quad A\\ \\ \frac { dQ }{ dt } \propto -\frac { d\theta  }{ dx } \\ \\
    Therefore

    \frac  { dQ }{ dt } \propto -A\frac { d\theta  }{ dx } \\ \\ \\ \\
    Where k = thermal conductivity of material.
    Therefore, thermal conductivity k is defined as the negative rate of heat flow per unit area perpendicular to the flow per unit temperature gradient. Metals, being good conductors, have higher value of k compare to non-metals. For same metals, k decreases slightly as the temperature increases. However, the decrease is mostly negligible.

    Solution

    \\ \\ \frac  { dQ }{ dt } =-kA\frac { d\theta  }{ dx } \\ \\ k=\frac { -\frac { dQ }{ dt }  }{ A\frac { d\theta  }{ dx }  } \\ \\ k\quad =\quad \frac { -50 }{ 3,142\quad (-0,5) } W\quad { m }^{ -1 }{ K }^{ -1 }\\ \\ k\quad =\quad 31,8\quad W\quad { m }^{ -1 }{ K }^{ -1 }\\ \\
  • Laman: 1 2 3 4 5 6 7
    0 0 votes
    Article Rating
    Subscribe
    Notify of
    0 Comments
    Inline Feedbacks
    View all comments