04. The thermal conductivity of a rod is 210 W m -1 K -1. Find the temperature gradient of the rod if the cross-sectional area of the rod is 3.0 cm2 and the rate of heat flow is 0.126 J s -1.

Quick Note!

The rate of heat flow \frac {dQ}{dt} perpendicular to the cross-sectional area A depends on :

  • the cross-sectional A.
  • the temperature gradient -\frac {d\theta}{dt} .
  • the material of the solid.

    It is found that

    \frac  { dQ }{ dt } \propto \quad A\\ \\ \frac { dQ }{ dt } \propto -\frac { d\theta  }{ dx } \\ \\
    Therefore

    \frac  { dQ }{ dt } \propto -A\frac { d\theta  }{ dx } \\ \\ \\ \\
    Where k = thermal conductivity of material.
    Therefore, thermal conductivity k is defined as the negative rate of heat flow per unit area perpendicular to the flow per unit temperature gradient. Metals, being good conductors, have higher value of k compare to non-metals. For same metals, k decreases slightly as the temperature increases. However, the decrease is mostly negligible.

    Solution

    \frac   { dQ }{ dt } =-kA\frac { d\theta  }{ dx } \\ \\ \frac { d\theta  }{ dx } =\frac { -\frac { dQ }{ dt }  }{ kA } \\ \\ \\ \frac { d\theta  }{ dx } =\frac { -0.126 }{ (210)(3x{ 10 }^{ -4 }) } K{ m }^{ -1 }\\ \\ \\ \frac { d\theta  }{ dx } =\quad -2.0\quad K{ m }^{ -1 }\\ \\
  • Laman: 1 2 3 4 5 6 7
    0 0 votes
    Article Rating
    Subscribe
    Notify of
    0 Comments
    Inline Feedbacks
    View all comments