06. A Composite rod of diameter 16 mm is insulated as show in the figure.

Calculate :

a. the thermal resistance of the aluminium rod and silver rod respectively
b. the temperature at the interface
c. the rate of heat flow through the composite rod.
— Thermal conductivities of aluminium and silver are 201 W m-1K-1 and 419 W m-1 K-1 respectively.–

Solution

a. R_\theta of Aluminium
{ R }_{ \theta  }\quad  aluminium\quad =\frac { { l }_{ A } }{ { k }_{ A }A } \\ \\ { R }_{ \theta  }\quad aluminium\quad =\frac { 0.15 }{ 201\pi \frac { ({ 16\quad x\quad { 10 }^{ -3 } })^{ 2 } }{ 4 }  } K{ W }^{ -1 }\\ \\ { R }_{ \theta  }\quad aluminium\quad =3.71\quad K{ W }^{ -1 }

R_\theta of Silver
{ R }_{ \theta  }\quad  aluminium\quad =\frac { { l }_{ A } }{ { k }_{ A }A } \\ \\ { R }_{ \theta  }\quad aluminium\quad =\frac { 0.35 }{ 419\pi \frac { ({ 16\quad x\quad { 10 }^{ -3 } })^{ 2 } }{ 4 }  } K{ W }^{ -1 }\\ \\ { R }_{ \theta  }\quad aluminium\quad =4.15\quad K{ W }^{ -1 }

b. Temperature at the interface = \theta
\theta  \quad =\quad \left( \frac { \frac { { k }_{ A }{ \theta  }_{ 1 } }{ { l }_{ A } } +\frac { { k }_{ S }{ \theta  }_{ 2 } }{ { l }_{ S } }  }{ \frac { { k }_{ A } }{ { l }_{ A } } +\frac { { k }_{ S } }{ { l }_{ S } }  }  \right) \\ \\ \theta \quad =\quad \left( \frac { \frac { 201\quad x\quad 90 }{ 0.15 } +\frac { 419\quad x\quad 20 }{ 0.35 }  }{ \frac { 201 }{ 0.15 } +\frac { 419 }{ 0.35 }  }  \right) \quad _{  }^{ 0 }{ C }\\ \\ \theta \quad ={ 57 }^{ o }C

c. the rate of heat flow through the composite rod.

\frac  { dQ }{ dt } =\frac { temperature\quad difference }{ total\quad thermal\quad resistance } \\ \\ \frac { dQ }{ dt } =\frac { 90\quad -\quad 20 }{ 3.71\quad +\quad 4.15 } W\\ \\ \frac { dQ }{ dt } =8.91\quad W

Laman: 1 2 3 4 5 6 7
0 0 votes
Article Rating
Subscribe
Notify of
0 Comments
Inline Feedbacks
View all comments